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Abstract: We present novel implementations of a One-Zero Gammatone Filter and a multiresolution Hamming
Window with constant time complexity for low power digital implementation in embedded speech recognition
systems. We compare our model with state-of-the-art basilar membrane models in terms of computational com-
plexity and in terms of phone classification accuracy on the TIMIT dataset and show quantitative advantages in
both, enabling better speech recognition for a broader class of power and resource constrained digital embedded
systems.
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1 Introduction
Decades of research in auditory filters have yielded
many models that either strive to mimic the known
response of human basilar membrane, to be used
in phone detection/classification or other natural lan-
guage processing, or frequently both guided by the in-
tuition that the nonlinear filtering in the human ear in
real ways directly supports auditory perception. The
structure of the ear is such that different frequencies
resonate a different points along the basilar membrane
yielding a tonotopic organization which can be mod-
eled by an array of overlapping band pass filters usu-
ally called ’auditory filters’ in this context [1]. Each
auditory filter represents basilar membrane displace-
ment at a point along the membrane which is gener-
ally non-linear and level dependent. Auditory filters
decrease in bandwidth as their center frequency de-
creases [2, 3].

Classically, speech analysis research has centered
strongly on (power) cepstral and mel-frequency cep-
stral analysis, where the power cepstrum is defined as
follows [4]:
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making use of the Discrete Fourier Transform
(DFT). The term Mel-Frequency Cepstral Coefficients
(MFCCs) refers to the cepstrum whose frequency do-
main is first filtered according to a mel scale designed
to better fit psychoacoustic data on pitch perception
[5, 6]. Though MFCC analysis is pervasive in natural

language processing, it does not strive necessarily to
directly model basilar membrane displacement or its
dynamic adaptability.

Gammatone (GT) filters have also been widely
used to model auditory filters for natural language
processing. A GT filter’s impulse response is a sinu-
soid with the amplitude envelope of a scaled gamma
distribution [7]. Patterson’s Ear defines a parallel fil-
ter bank of GT filters with various parameters selected
to match psychoacoustic data [7, 8, 9] which like
mel scales results in non-uniform spacing of frequen-
cies (though the frequencies are selected as a conse-
quence of mimicking basilar membrane response in-
stead of perceptual pitch relations). In this model,
Glasberg-Moore’s suggested parameters are often se-
lected since the asymptotic limits for the filters’ Q
values are greater than other published parameters
[7]. A broad comparative overview of auditory fil-
ter models finds that the One-Zero Gammatone Fil-
ter (OZGF) [10, 11] and the Pole-Zero Filter Cascade
[10] are comparatively superior choices as auditory
filters models among a pool of rounded exponential,
GT and filter cascade models [10]. While GT filters
are most frequently used in cochlear modeling and
speech recognition, these filters are nearly symmetric
in the pass band (where significant asymmetries exist
in biological transfer functions) and it is difficult to
parameterize the GT for level-dependent adaptations
in the auditory filter [11].
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Figure 1: 4th Order Digital Biquad with data paths sized to maintain stability of OZGF for full-range input.

2 One-Zero Gammatone Filter Bank
and Multiresolution Hamming
Windowing

The OZGF transfer function is defined as follows [11]:

H(s) =
ω2N−2
0

[

s2 + w0
Q s+ w0

]N+1
× w0(s+ a)

s2 + w0
Q s+ w0

(2)
where the real zero is chosen to be a = w0/Q [11].
Thus given the sampling frequency fs, center fre-
quency fc = w0/2π, and filter factor Q, one may use
the bilinear transform to map into the z-plane for the
band pass and low pass biquads, and this transfer func-
tion may be expressed simply as a fourth order, direct
form II (transposed) digital biquad cascade (Fig. 1).

A parallel bank of OZGFs may then be used to
model basilar membrane response. We use the Glas-
berg/Moore [7, 8, 9] method to determine center fre-
quencies for the filter bank, computing filter param-
eters over a range of Q = 2, 3, . . . , 12 and we ver-
ified filter behavior using Matlab. We then imple-
mented the filters in Verilog, and using ModelSim we
validated the fixed-point Verilog filter performance in
both the time and frequency domains against expected
responses using Matlab. Note that the Biquad cascade
illustrated in Fig. 1 features incrementally sized data
paths to maintain stability in the IIR filter across the
full dynamic range of the input.

Psychophysical data indicate that spoken lan-
guage recognition requires a temporal resolution on
the order of 10 milliseconds; thus we follow conven-
tional methods for natural language processing and
use Hamming windows to decimate the data in time,
reducing the sampling rate to 100 Hz. Let Ns =
�TsFs�, where Ts = 0.01 seconds is the windowing
period (2Ts is the window size) and Fs is the sampling

frequency. The Hamming window function is then

w(t) =

{

0.08 + 0.46 cos
(

πt
2Ns

)

, t ∈ [−Ns, Ns]

0, otherwise
(3)

where 2Ns is the number of samples in the Hamming
Window. Let y(t) be the signal to be windowed. We
then compute the windowed response (in decibels)
with half-square rectification and log compression:

yw(T ) = 20 log

Ns
∑

i=−Ns,i∈Z
w(i) |y(T + i)| (4)

The same window function may then be used to pro-
vide a second temporal resolution to allow estimates
of the first and second derivatives of yw(T ). Window-
ing at twice the rate yields three distinct subwindows
yw(T ), yw,c(T ), and yw,r(T ):

yw,l(T ) = 20 log

Ns/2
∑

i=−Ns/2,i∈Z
w(2i) |y(T + i−Ns/2)|

(5)

yw,c(T ) = 20 log

Ns/2
∑

i=−Ns/2,i∈Z
w(2i) |y(T + i)| (6)

yw,c(T ) = 20 log

Ns/2
∑

i=−Ns/2,i∈Z
w(2i) |y(T + i+Ns/2)|

(7)

Thus yw,r := (T )yw,l(T + 1). Maximum like-
lihood estimates of first and second derivatives with
respect to time may then be defined as follows:

WSEAS TRANSACTIONS on SIGNAL PROCESSING Brian Smith, John Sustersic, Michael Moore

E-ISSN: 2224-3488 53 Volume 11, 2015



ŷ′w(T ) =
yw,r(T )− yw,l(T )

Ts
(8)

ŷ′′w(T ) =
yw,r(T )− 2yw,c(T ) + yw,l(T )

Ts
(9)

As with digital filters, computational complex-
ity of the windowed data and estimates of the first
two time derivatives is constant for each input sam-
ple and thus easily implemented in real-time. The
OZGF is advantageous over other basilar membrane
models because of its unique numerical advantages.
Specifically, gammatone filters are eighth-order IIR
filters, and like all high-order filters of this class are
highly susceptible to instability and to quantization
of their coefficients[12]. Coefficients for the Moore
model gammatone filter with a center frequency of
100 Hz range from −54.2438 to 67.1041 (feedback)
and from −8.82 × 10−8 to 2.12 × 10−8 (feedfor-
ward). Thus in this filter of this center frequency, co-
efficients range over ten orders of magnitude. At a
center frequency of 10KHz, feedforward coefficients
range from 0.14 × 10−2 to 3.22 × 10−2. Floating
point arithmetic of double precision is required to
avoid instability in the filter for a filter bank span-
ning the frequency range of 100 Hz to 10KHz. In
contrast, the FPGA design of our OZGT filter as a
digital biquad allows us to implement the gamma-
tone filter completely in fixed point arithmetic. For
comparison, a double precision floating point multi-
plier implemented using Altera IP on Stratix IV de-
vices requires ten 18-bit DSP resources along with
several hundreds of other resources and a minimum
of five clock cycle latency, and a single fixed-point
54-bit multiplier requires on three DSP resources and
provides a single clock latency[13]. Thus to achieve
the same rate of computation, floating point requires a
clock at least five times that of fixed point and signif-
icantly more on-chip resources; since power required
is proportional to both number of transistors in the
circuit and to clock speed, floating point is an order
of magnitude more expensive simply in terms of DSP
resources and clock speeds, and even more so consid-
ering the additional FPGA resources required to im-
plement floating point arithmetic. Thus the OZGT
filter implementation significantly more efficient not
only in terms of computational efficiency, but also in
terms of power and resource requirements, and we
have shown the filters are stable across the range of
frequencies from 100 Hz to 10KHz.

An example of an audio recording of a male
speaker uttering the phrase “the quick brown fox
jumps over the lazy dog” after filtering by a OZGF
bank (Q = 10) and windowed using these methods is
illustrated in Fig. 2.

3 Methodology
To determine the appropriateness of applying the
OZGF for embedded acoustic classification, we chose
the task of phone identification using the standard
TIMIT dataset [14]. We follow a similar method as
[15]. First, unsupervised learning techniques are used
to learn and select appropriate feature vectors by anal-
ysis of an unlabeled dataset. Then, these feature vec-
tors are used to train a support vector machine (SVM)
using the method of [16]. We report phone classifi-
cation results using feature vectors learned from the
OZGF filtered data with various values of Q, from
the Moore-Glasberg model of the gammatone filter,
and from the short-term Fourier transform (STFT) fre-
quency response (at both uniformly sampled frequen-
cies and at mel-frequency spacings).

The best performance on the TIMIT phone iden-
tification task has recently been reported in [15], us-
ing one of a set of unsupervised learning methods
which have recently gained significant attention for
success in classification in a variety of fields includ-
ing handwritten digit identification[17] and computer
vision[18], as well as phone classification. In these
application it is often time-consuming and costly to
hand-design the features upon which an algorithm will
base its decisions. Very briefly, the technique con-
sists of treating the spectrogram (short-term Fourier
transform, or STFT) of an audio signal as an image,
and then identifying phones in that image using fea-
tures learned from an unlabeled dataset. We com-
pare the performance of the OZGF by using images
constructed from gammatone filtering, rather than the
spectrogram images from the STFT.

To compute features to be used in the classifica-
tion task, we construct and train a sparse autoencod-
ing neural network (SAENN)[19]. A SAENN, a form
of manifold learning, is trained to learn a sparse rep-
resentation of a dataset, tailored to the class of data
under investigation, and the basis of this representa-
tion become features for classification. Specifically,
our neural network is a function

x̂ = f
(

W 2
T × f (W1x+ b1) + b2

)

(10)

where x and x̂ are nv × 1 data vectors, W1 and W2

are nh×nv weight matrices, b1 and b2 are nv × 1 and
nh×1, respectably, sized bias vectors, and f (̇) is a the
vectorized sigmoid function. We train the network by
minimizing the cost

J(W, b) =
1

2m

m
∑

i=1

||x̂i − xi||2

+R(W1,W2) +D(ρ||ρ̂) (11)
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Figure 2: Filtered and windowed example of spoken English using 128 channel OZGF bank, fmin = 100Hz,
fmax = 10kHz, Q = 10.

using a gradient descent optimization on W1, W2, b1
and b2. In the above cost function, m is the number of
training examples, R is a regularization cost and D is
a cost to promote sparsity so that each neuron in the
hidden layer is active for a desired ρ fraction of the
training examples

R(W1,W2) =
λ

2

[

Tr(W1W
T
1 ) + Tr(W2W

T
2 )

]

(12)

D(ρ||ρ̂) = β

nh
∑

j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(13)

where β and λ are tunable weight parameters and ρ̂j
is the average activation of the jth hidden node. Once
the cost function is minimized, the nh rows of W1,
each of length nv, are taken as feature vectors. To
determine proper feature vectors for audio, we first
applied the OZGT filter with Q = 10 to the training
examples of the TIMIT data set, using 120 frequency
components spaced logarithmically between 100 and

7500Hz, and Hamming window filtered the output to
20ms length segments with 10ms overlap. We sim-
ilarly did so using the Glasberg/Moore model, vari-
ous other values of Q for the OZGT filter, a spectro-
gram using the FFT with 128 uniformly spaced fre-
quency components, and a spectrogram using the dis-
crete Fourier transform (DFT) at the same frequency
sample spacings as the gammatone filters, for fair
comparison. From each sound file in the training set
of the TIMIT database, two “patches” were randomly
selected as training examples: a patch consists of the
log-power of the 120 (or 128) frequency components
taken over 4 consecutive Hamming window samples,
for a width of 50 ms. Thus, the input to the autoencod-
ing neural network consists of m = 9240 data vectors,
of length nv = 480 (or 512). Other parameters that
were used (after selection via some empirical obser-
vation for tuning) are ρ = 0.08, nh = 300, β = 0.01,
and λ = 0.01. Gradient descent was used to learn
(locally) optimal W1, W2, b1 and b2.
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Table 1: TIMIT Phone Classification Accuracy: Cor-
rect phone identification

Method Correctness

OZGF, Q=2 58.4%
OZGF, Q=4 60.6%
OZGF, Q=6 60.8%
OZGF, Q=8 60.9%
OZGF, Q=10 60.8%
OZGF, Q=12 60.6%
MGGF 61.2%
Fourier-Equal Frequency Spacing 52.4%
Fourier-Log Frequency Spacing 45.4%

For training the support vector machine classifier,
feature vectors were built in a similar method to [16]:
For each labeled phone training example, the feature
vector consists of the activations of the hidden layer
of the neural net from the “patch” at the beginning
of the phone, concatenated with the activations from
the patch at the end of the phone, concatenated with
the average activation taken over all “patches” con-
tained within the phone. The length of the phone was
taken as an additional feature, meaning each SVM in-
put consists of a 901 length vector. One-vs-all classi-
fication was performed, and results are reported on the
grouped-phone (26-class) classification for the test-
ing subset of the TIMIT database. This methodol-
ogy is conceptually similar to the unsupervised feature
extraction and phone identification work from [15],
which, when including MFCC’s in their feature vec-
tor as well, provided the best known performance.

4 Results
This investigation was performed to determine
whether the features learned from using a OZGF per-
formed at a similar level of performance to those de-
rived from the more complex Moore/Glasberg Gam-
matone Filter model (MGGF), and to fairly compare
their performance with a standard Fourier transform
derived model. Results for the various filter models
are reported in Table I.

For each filter, four sets of basis function fea-
ture vectors were derived by the neural network from
random weight initializations, and the average perfor-
mance of the classifications are reported. The typi-
cal variation between two trials of the same filter type
was between 0.1% and 0.2%. We can see that for
values of Q between 8 and 10, the classification per-
formance is the highest, comparable with and even
exceeding the performance of the Moore/Glasberg

model. Performance also exceeds that of the sim-
ple uniformly spaced FFT and logarithmically spaced
DFT log-power spectrograms. Additionally, we have
broken out classification performance via each of six
phone classes, as defined in [20]. It was seen that the
performance of the classifier on fricatives peaks ear-
lier with respect to Q than other classes (the perfor-
mance of stops improves with greater Q). This implies
that multiple filters may be used in parallel to achieve
the greatest performance.

The best direct performance comparisons with
our method are can be found in the analogous experi-
ments from [15]. In that work the classification results
(without the addition of MFCCs) use restricted Boltz-
mann models, rather than the autoencoding network
model, and do not use biologically inspired filters.
That experiment achieves comparable results of be-
tween 56.7% and 64.4% classification accuracy. The
paper also demonstrates the fusion of unsupervised
learning methods for feature extraction (explored in
our work) with traditional mel-frequency cepstral co-
efficients, and achieves the best so-far reported per-
formance for recognition on the TIMIT dataset, of
80.3%. We thus propose the fusion of OZGF features
with MFCC features for future work, where our clas-
sification results could better approach state-of-the-
art (but would also lose the computational efficiencies
gained from discarding the Fourier transform model).

5 Conclusions

From this work, we can see that the OZGF provides
computational advantages over the Moore/Glasberg
gammatone filter when implemented in hardware, as
well as classification performance advantages over the
simple Fourier transform model. While filterbank
models are not generally a feature of traditional auto-
matic speech recognition systems (because the various
components are strongly correlated and thus not well
suited for the Gaussian Mixture Model paradigm in
common use), deep belief networks are currently en-
abling their reintroduction. We propose using belief
network structures in tandem with the one-zero gam-
matone filter model, rather than traditional Fourier
transform filters, to increase recognition capabilities
and to increase the ease of efficient implementation in
hardware. While our classification results are not yet
state of the art, this experiment demonstrates the im-
provement gained by using the OZGF over the Fourier
transform. Future work includes augmenting the re-
search of [15, 21] by including the one-zero gamma-
tone filter, to attempt to improve on the state of the art
classification algorithms.
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